ページトップへ

プロフィール

助教:Research Associate

所属及び連絡先

東京薬科大学生命科学部ゲノム病態医科学研究室

〒192-0392 東京都八王子市堀之内1432-1 研究3号館10階
Tel: 042-676-7221/Fax: 042-676-7249

Tokyo University of Pharmacy and Life Sciences.
Laboratory of Genome and Biosignals

1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392, Japan
Tel: +81-42-676-7221/Fax: +81-42-676-7249

略歴

1997年 3月
お茶の水女子大学大学院人間文化研究科博士課程人間環境学専攻修了
1997年 3月
お茶の水女子大学博士(理学)学位取得
1997年 4月-2001年 7月
通産省工技院(現 産総研)生命工学工業技術研究所
(1997年 4月 -2000年 3月
NEDOフェロー
2000年 4月 - 2001年 7月)
生命研ポスドク
2001年 8月 - 2007年 1月
Department of Biomedical Sciences, Faculty of Medicine,
Imperial College London, Research Associate(ポスドク職)
2007年 1月 - 2012年 1月
Department of Biomedical Sciences, Biotech Research and Innovation Centre (BRIC),
Faculty of Health Sciences, University of Copenhagen
(2007年 1月 - 2009年 2月
Visiting Associate Professor
2009年 3月-2012年 1月)
Associate Professor(3年任期)
2012年 2月 -
東京薬科大学生命科学部ゲノム情報学研究室助教

現在に至る

所属学会

  • 日本細胞生物学会
  • 日本糖質学会
  • The Histochemical Society
  • 日本生化学会

受賞歴

2007年 4月
The Histochemical Society (US),
Outstanding Young Investigator Award

研究概要

  • 癌微小環境形成等における細胞外マトリクスと細胞内骨格のクロストークに関わる分子機構解明

主な研究業績

<英文原著論文>


  • Høye, AM., Couchman, JR., Wewer, UM., and Yoneda, A. The phosphorylation and distribution of cortactin downstream of integrin α9β1 affects cancer cell behaviour. Sci. Rep. 6. 28529 (2016)
  • Kudo, K., Uchida, T., Sawada, M., Nakamura, Y., Yoneda, A., Fukami, K. hospholipase C δ1 in macrophages negatively regulates TLR4-induced proinflammatory cytokine production and Fcγ receptor-mediated phagocytosis. Adv. Biol. Regul. 61. 68-79 (2016)
  • M, Morgan-Fisher., J, R. Couchman., and Yoneda, A. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion. J. Biol. Chem. 288. 31229-31240 (2013)
  • R, Ard., K, Mulatz., H, Abramovici., J. C. Maillet., A, Fottinger., T, Foley., M, Byham., T, A. Iqbal., Yoneda. A., J.R. Couchman., R, J. Parks., and S, H. Gee. , Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism. Mol. Biol. Cell 23. 4008-4019 (2012)
  • Yoneda, A., M, Morgan-Fisher., R, Wait., J, R. Couchman., and U, M. Wewer. A CRMP-2 isoform controls myosin Ⅱ-mediated cell migration and matrix assembly by trapping ROCK Ⅱ. Mol. Cell. Biol. 32. 1788-1804 (2012)
  • A, Dovas., Y, Choi., Yoneda., A., H, A.B. Multhaupt., S-H, Kwon., D, Kang., E-S, Oh., and J, R. Couchman. Serine 34 phosphorylation of Rho guanine dissociation inhibitor (RHOGDIalpha) links signaling from conventional Protein Kinase Cα to Rho GTPase in cell adhesion. J. Biol. Chem. 285. 23296-23308 (2010)
  • S. Gopal., A. Bober., J, R. Whiteford., H, A.B. Multhaupt., Yoneda, A., and J, R. Couchman. Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J. Biol. Chem. 285. 14247-14258 (2010)
  • M, C. Lydolph., M, Morgan-Fisher., J. R. Couchman., U, M. Wewer., and Yoneda, A. α9β1 integrin in melanoma cells can signal different adhesion states for migration and anchorage. Exp. Cell Res. 315. 3312-3324 (2009)
  • Yoneda., A., D, Ushakov., H, A. B. Multhaupt., and J, R. Couchman. Fibronectin matrix assembly requires distinct contributions from Rho kinases I and -II. Mol. Biol. Cell 18. 66-75 (2007)
  • A, Dovas., Yoneda, A., and J, R. Couchman. PKC-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J. Cell Sci 119. 2837-2846 (2006)
  • Yoneda, A., H, A. B. Multhaupt., and J, R. Couchman. The Rho kinases I and II regulate different aspects of myosin II activity. J. Cell Biol. 170. 443-453 (2005)
  • Yoneda , A., Asada, M., Yamamoto, S., Oki, J., Oda, Y., Ota, K., Ogi, Y., Fujishima, S., and T, Imamura. Engineering neoglycoproteins with multiple O-glycans using repetitive pentapeptide glycosylation units. Glycoconj. J. 18. 291-299 (2001)
  • Asada, M., Yoneda, A., Oda, Y., and Imamura, Y. Construction of a cDNA encoding a repetitive amino acid sequence. Biotechniques 29. 978-981 (2000)
  • Uchibori-Iwaki, H., Yoneda, A., Oda-Tamai, S., Kato, S., Akamatsu, N., Otsuka, M., Murase, K., Kojima, K., Suzuki, R., Maeya, Y., Tanabe, M., and Ogawa, H. The changes in glycosylation after partial hepatectomy enhance collagen binding of vitronectin in plasma. Glycobiology 10. 865-874 (2000)
  • Hayashi, H., Yoneda, A., Asada, M., Ikekita, M., and Imamura, T. Molecular Cloning of Mouse Alpha-1,6-Fucosyltransferase and Expression of Its mRNA in the Developing Cerebrum. DNA Seq. 11. 91-96 (2000)
  • Yoneda, A., Asada, M., Oda, Y., Suzuki, M., and Imamura, T. Engineering of an FGF-Proteoglycan Fusion Protein with Heparin-Independent, Mitogenic Activity. Nat. Biotechnol. 18. 641-644 (2000)
  • Asada, M., Orikasa, N., Yoneda, A., Oda, Y., Ota, K., and Imamura, T. The AATPAP sequence is a very efficient signal for O-glycosylation in CHO cells. Glycoconj. J. 16. 321-326 (1999)
  • Yoneda, A., Asada, M., Suzuki, M., and Imamura, T. Introduction of an N-glycosylation cassette into proteins at random sites: expression of neoglycosylated FGF. BioTechniques 27. 576-8 580 582 passim (1999)
  • Asada, M., Yoneda, A., Oda, Y., Ota, K., Ozawa, K., Fukuta, K., Omae, F., Asanagi, M., Orikasa, N., Suzuki, M., Oka, S., Makino, T., and Imamura, T. Characterization of Fibroblast Growth Factor-6 Expressed by Chinese Hamster Ovary Cells as a Glycosylated Mitogen for Human Vascular Endothelial Cells. Growth Factors 16. 293-303 (1999)
  • Ozawa, K., Suzuki, S., Asada, M., Tomooka, Y., A-j, Li., Yoneda, A., Komi, A., and Imamura, T. An alternatively-spliced FGF-5 mRNA is abundant in brain and translates into a partial agonist/antagonist for FGF-5 neurotrophic activity. J. Biol. Chem. 273. 29262-29271 (1998)
  • Yoneda, A., Ogawa, H., Kojima, K., and Matsumoto, I. Characterization of the ligand binding activities of vitronectin: interaction of vitronectin with lipids and identification of the binding domains for various ligands using recombinant domains. Biochemistry 37. 6351-6360 (1998)
  • Yoneda, A., Kojima, K., Matsumoto, I., Yamamoto, K., and Ogawa, H. Porcine vitronectin, the most compact form of single-chain type vitronectin. The smallest molecular mass among vitronectins was ascribed to deletion and substitution of base pairs, and proteolytic trimming of the peptide. J. Biochem. 120. 954-960 (1996)
  • Ogawa, H., Yoneda, A., Seno, N., Hayashi, M., Ishizuka, I., Hase, S., and IMatsumoto. I. Structures of the N-linked oligosaccharides on human plasma vitronectin. Eur. J. Biochem. 230. 994-1000 (1995)
  • Yoneda, A., Ogawa, H., Matsumoto, I., Ishizuka, I., Hase, S., and Seno, N. Structures of the N-linked oligosaccharides on porcine plasma vitronectin. Eur. J. Biochem. 218. 797-806 (1993)

<総説・著書等>


  • Gomes, A. M., Sinkeviciute, D., Multhaupt, H. A. B., Yoneda, A., Couchman, J. R. Syndecan heparan sulfate proteoglycans: regulation, signaling and impact on tumor biology. シンデカンヘパラン硫酸プロテオグリカン:制御、シグナリング、癌生物学への影響 Trends Glycosci. Glycotechnol. 28, E79-E90, (2016)
  • Yoneda, A. Fibronectin Matrix Assembly and Its Significant Role in Cancer Progression and Treatment. フィブロネクチンマトリックス形成とがんにおけるその重要性 Trends Glycosci. Glycotechnol. 27. 89–98 (2015)
  • M. Morgan-Fisher., U. M. Wewer., and Yoneda, A., Regulation of ROCK activity in cancer. J. Histochem. Cytochem. 61. 185-198 (2013)
  • A, M. Høye., J. R. Couchman., U, M. Wewer., Fukami, K., and Yoneda, A. The newcomer in the integrin family: Integrin α9 in biology and cancer. Adv. Biol. Regul. 52. 326-339 (2012)
  • Yoneda, A., M, E. Lendorf., J, R. Couchman., and H, A. Multhaupt. Breast and ovarian cancers: a survey and possible roles for the cell surface haparan sulfate proteoglycans. J. Histochem. Cytochem. 60. 9-21 (2012)
  • H, A. B. Multhaupt., Yoneda, A., J, R. Whiteford., E.-S, Oh., W, Lee., and J, R. Couchman. Syndecan signaling: where, when and why. J. Physiol. Pharmacol. 60. 31-38 (2009)
  • Yoneda, A., and J, R. Couchman. Regulation of Cytoskeletal Organization by Syndecan Transmembrane Proteoglycans. Matrix Biol. 22. 25-33 (2003)
  • Asada, M., Yoneda, A., and Imamura. T. Engineering of a Heparin-Binding Growth Factor with Heparan Sulfate Sugar Chains. Trends Glycosci. Glycotechnol. 13. 385-394 (2001)
  • Yoneda, A. Vitronectin as a Multifunctional Glycoprotein. -The Complete Structure and New Ligands-. Trends Glycosci. Glycotechnol. 11. 143-146 (1999)
  • 米田敦子、浅田眞弘、今村 亨 シンデカンとの融合によるヘパリン結合性増殖因子 FGF-1 の活性改変 細胞工学 HOT PRESS 秀潤社 1999年9月
  • Yoneda, A. The possible role of cytosolic domain of heparan sulfate proteoglycan, syndecan. Trends Glycosci. Glycotechnol. 10. 417-419 (1998)
  • Yoneda, A. Basal lamina heparan sulfate proteoglycan, perlecan, as a low affinity receptor for fibroblast growth factor. Trends Glycosci. Glycotechnol. 9. 357-358 (1997)
  • 米田敦子、松本勲武 無敵のバイオテクニカルシリーズ 118頁 - 125頁
  • 岡田雅人、宮崎 香編 タンパク質実験ノート 下 一次構造の決定まで 羊土社 1996年 10月
  • 小川温子、松本勲武、米田敦子 ビトロネクチン ノックアウトマウス・データブック 中山書店 564, 1997, dictionary